1.微积分主要学什么?

2.19世纪微积分的定义

3.微积分/无穷级数/敛散判别

4.怎样学好微积分

5.微积分 用极限定义证明等式

6.微积分的符号怎么打

calculus_calculus of variations

微积分是什么?微积分的含义:

微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分主要学什么?

一般所说的微积分通常指微积分学,它是数学的一个重要分支。

一、什么是微积分

微积分学(Calculus,拉丁语意为用来计数的小石头) 是研究极限、微分学、积分学和无穷级数的一个数学分支,并成为了现代大学教育的重要组成部分。历史上,微积分曾经指无穷小的计算。更本质的讲,微积分学是一门研究变化的科学,正如几何学是研究形状的科学,代数学是研究代数运算和解方程的科学一样。

微积分学在科学、经济学和工程学领域有广泛的应用,用来解决那些仅依靠代数学不能有效解决的问题。微积分学在代数学、三角学和解析几何学的基础上建立起来,并包括微分学、积分学两大分支。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行演绎。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中一般会先引入微分学。在更深的数学领域中,微积分学通常被称为分析学,并被定义为研究函数的科学。

二、基本概念

微积分主要有三大类分支:极限、微分学、积分学。微积分的基本理论表明了微分和积分是互逆运算,牛顿和莱布尼茨发现了这个定理以后才引起了其他学者对于微积分学的狂热的研究,而这个发现也使得我们在微分和积分之间可以互相转换。这个基本理论也提供了一个用代数计算许多积分问题的方法,也就是用不定积分法取代极限运算法。该理论也可以解决一些微分方程的问题,解决未知数的积分。微分问题在科学领域无处不在。

微积分的基本概念还包括函数、无穷序列、无穷级数和连续等,运算方法主要有符号运算技巧,该技巧与初等代数和数学归纳法紧密相连。

微积分被延伸到微分方程、向量分析、变分法、复分析、时域微分和微分拓扑等领域。微积分的现代版本是实分析。

三、微积分学的历史

(1) 古代

古代数学的思想更倾向于积分,但是并不严格、系统。积分的其中一个任务,即计算体积和面积,可以从埃及的莫斯克纸莎草手卷中找到(公元前1820年),它的公式也十分简单,没有写明方法,主要成分也残缺不齐。积分的起源很早,古希腊时期欧多克索斯(公元前408-355年)就用穷尽的方法来求特殊图形面积的研究。阿基米德(公元前287-212年) 用内接正多边形的周长来穷尽圆周长,而求得圆周率的近似值;也用一连串的三角形来填充抛物线的图形,以求得其面积。这些都是穷尽法的古典例子。中国的刘徽在公元三世纪左后也应用穷尽法求圆的面积。在公元五世纪左后,祖冲之得出了计算球体积的算法,它也被称之为卡瓦列里公式。

(2) 现代

发展现代微积分理论的一个动力是为了解决“切线问题”,另一个是“面积问题”。

文艺复兴之后,基于实际的需要及理论的探讨,积分技巧有了进一步的发展。譬如为了航海的方便,杰拉杜斯·麦卡托发明了所谓的麦卡托投影法,使得地图上的直线就是航海时保持定向的斜驶线。在欧洲,基础性的论证来自博纳文图拉·卡瓦列里,他认为体积和面积应该用求无穷小横截面的总量来计算。他的想法类似于阿基米德的《方法论》,但是卡瓦列里的手稿丢失了,直到20世纪初期再被找到。卡瓦列里的努力没有得到认可,因为他的方法的误差巨大,而且在当时无穷小也不受重视。

17世纪的前半是微积分学的酝酿时期,观念在摸索中,计算是个别的,应用也是个别的。而后戈特弗里德·威廉·莱布尼茨和艾萨克·牛顿两人几乎同时使微积分观念成熟,澄清微、积分之间的关系,使计算系统化,并且把微积分大规模使用到几何与物理研究上。

在他们创立微积分以前,人们把微分和积分视为独立的学科,之后才确实划分出“微积分学”这门学科。

在对微积分的正式研究中,皮埃尔·德·费马声称他借用了丢番图的成就,引入了“足量”概念,等同于误差的无穷小。可惜他未能体会两者之间的密切关系。约翰·沃利斯 (数学家)、伊萨克·巴罗和詹姆士·格里高利完成了组合论证。而牛顿的老师伊萨克·巴罗虽然知道两者之间有互逆的关系,但他不能体会此种关系的意义,其原因之一就是求导数还没有一套有系统的计算方法。古希腊平面几何的成功给予西方数学非常深远的影响:一般认为唯有几何的论证方法才是严谨、真正的数学,代数不过是辅助的工具而已。直到笛卡儿及费马倡导以代数的方法研究几何的问题,这种态度才渐有转变。可是一方面几何思维方式深植人心,而另一方面代数方法仍然未臻成熟,实数系统迟迟未能建立,所以许多数学家仍然固守几何阵营而不能发展出有效的计算方法,巴罗便是其中之一。牛顿虽然放弃了他老师的纯几何观点而发展出了有效的微分方法,可是他迟迟未敢发表。牛顿利用了微积分的技巧,由万有引力及运动定律出发说明了他的宇宙体系,解决天体运动,流体旋转的表面,地球的扁率,摆线上重物的运动等问题。牛顿在解决数学物理问题时,使用了独特的符号来进行计算,实际上这些就是乘积法则、链式法则、高阶导数、泰勒级数和解析方程。但因害怕当时人的批评,所以在他1687年的巨著《自然哲学的数学原理》中仍把微积分的痕迹抹去,而以古典的几何论证方式论述。在其它著作中,牛顿使用了分数和无理数的乘幂,很明显,牛顿知道泰勒级数的定律。但是他没有发表这些发现,因为无穷小在当时仍然饱受争议。

上述思想被戈特弗里德·威廉·莱布尼茨整合成为真正的无穷小版本的微积分,而牛顿指责前者抄袭。莱布尼茨在今天被认为是独立发明微积分的另一人。他的贡献在于风格严密,便于计算二次或更高级别的导数,以微分和积分的形式给出乘积法则和链式法则。与牛顿不同,莱布尼茨很注重形式,常常日复一日地研究妥当的符号。

莱布尼茨和牛顿都被认为是独立的微积分发明者。牛顿最先将微积分应用到普通物理当中,而莱布尼茨制作了今天绝大多数的符号。牛顿、莱布尼茨都给出了微分、积分的基本方法,二阶或更高阶导数,数列近似值符号等。在牛顿的时代,微积分基本公式已经被世界知晓。

当牛顿和莱布尼茨第一次发表各自的成果是,数学界就发明微积分的归属和优先权问题爆发一场旷日持久的大争论。牛顿最先得出结论,而莱布尼茨最先将其发表。牛顿称莱布尼茨从他未发表的手稿中抄袭,这个观点得到了牛顿所在的皇家学会支持。这场大纷争将使数学家分成两派:一派是英国数学家,捍卫牛顿;另一派是欧洲大陆数学家。结果是对英国数学家不利。日后的小心求证得出牛顿和莱布尼茨两人独立得出自己的结论。莱布尼茨从积分推导,牛顿从微分推导。在今天,牛顿和莱布尼茨被誉为发明微积分的两个独立作者。“微积分”之名与其使用之运算符号则是莱布尼茨所创,而牛顿将它称为“流数术”。

微积分实际被许多人不断地完善,也离不开巴罗、笛卡儿、费马、惠更斯和沃利斯的贡献。最早的一部完整的有关有限和无穷小的分析著作被玛利亚·阿涅西于1748年总结编订。牛顿和莱布尼茨虽然把微积分系统化,但是它还是不够严谨。可是当微积分被成功地用来解决许多问题,却使得十八世纪的数学家偏向其应用,而少致力于其严谨。当时,微积分学的发展幸而掌握在几个非常优越的数学家,如欧拉、拉格朗日、拉普拉斯、达朗贝尔及伯努利世家等人的手里。研究的问题由自然现象而来,所以能以自然现象的数据来验合微积分的许多推论,使微积分学不因基础不稳而隐含错误。在这些众数学家的手中,微积分学的范围很快地超过现在大学初阶段所授的微积分课程,而迈向更高深的解析学。

资料来源:维基百科。

19世纪微积分的定义

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

主要学习:

一。函数

二。极限与连续性

三。导数与微分

四。微分中值定理

五。不定积分

六。定积分

七。常微分方程

八。矢量代数与空间解析几何

九。多元函数微分学

十。重积分

十一。曲线积分与曲面积分

十二。无穷级数

微积分/无穷级数/敛散判别

它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。

微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。这个概念是成功的。

微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。

客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

[编辑本段]

微积分的本质

参考文献 刘里鹏.《从割圆术走向无穷小——揭秘微积分》,长沙:湖南科学技术出版社,2009

1.用文字表述:

《从割圆术走向无穷小——揭秘微积分》封面增量无限趋近于零,割线无限趋近于切线,曲线无限趋近于直线,从而以直代曲,以线性化的方法解决非线性问题,这就是微积分理论的精髓所在。

2.用式子表示:

用式子表示微积分的本质[编辑本段]

微积分的基本方法

微积分的基本原理告诉我们微分和积分是互逆的运算,微积分的精髓告诉我们我们之所以可以解决很多非线性问题,本质的原因在于我们化曲为直了,现实生活中我们会遇到很多非线性问题,那么解决这样的问题有没有统一的方法呢?

经过研究思考和总结,笔者认为,微积分的基本方法在于:先微分,后积分。

笔者所看到的是,现在的教材没有注意对这些基本问题的总结,基本上所有的教材每讲到积分时都还重复古人无限细分取极限的思想,讲到弧长时取极限,讲到面积时又去极限,最后用一个约等号打发过去。这样以来不仅让学生听得看得满头雾水,而且很有牵强附会之嫌,其实懂得微积分的本质和基本方法后根本不需要再那么重复。

[编辑本段]

微积分学的建立

从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。

不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼茨早10年左右,但是正式公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。

应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。

直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。

任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、柯西……

欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。

[编辑本段]

微积分的基本内容

研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。

本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

微积分是与科学应用联系着发展起来的。最初,牛顿应用微积分学及微分方程对第谷浩瀚的天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。此后,微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

[编辑本段]

一元微分

定义: 设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) – f(x0)可表示为 Δy = AΔx0 + o(Δx0)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = Adx。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

[编辑本段]

几何意义

设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

[编辑本段]

多元微分

多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。

ΔZ=A*ΔX+B*ΔY+ο(ρ)为函数Z在点(x、y)处的全增量,(其中A、B不依赖于ΔX和ΔY,而只与x、y有关,ρ=[(x∧2+y∧2)]∧(1\2),A*ΔX+B*ΔY即是Z在点的全微分。

总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。

积分有两种:定积分和不定积分。

不定积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。

其中:[F(x) + C]' = f(x)

一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。

定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,它们又为何通称为积分呢?这要靠牛顿和莱布尼茨的贡献了,把本来毫不相关的两个事物紧密的联系起来了。详见牛顿——莱布尼茨公式。

一阶微分与高阶微分

函数一阶导数对应的微分称为一阶微分;

一阶微分的微分称为二阶微分;

.......

n阶微分的微分称为(n+1)阶微分

即:d(n)y=f(n)(x)*dx^n (f(n)(x)指n阶导数,d(n)y指n阶微分,dx^n指dx的n次方)

含有未知函数yt=f(t)以及yt的差分Dyt, D2yt,…的函数方程,称为常差分方程(简称差分方程);出现在差分方程中的差分的最高阶数,称为差分方程的阶。n阶差分方程的一般形式为

F(t,yt,Dyt,…, Dnyt)=0,

其中F是t,yt, Dyt,…, Dnyt的已知函数,且Dnyt一定要在方程中出现。

含有两个或两个以上函数值yt,yt+1,…的函数方程,称为(常)差分方程,出现在差分方程中未知函数下标的最大差,称为差分方程的阶。n阶差分方程的一般形式为

F(t,yt,yt+1,…,yt+n)=0,

其中F为t,yt,yt+1,…,yt+n的已知函数,且yt和yt+n一定要在差分方程中出现。

常微分方程与偏微分方程的总称。含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。

[编辑本段]

微积分的诞生及其重要意义

微积分的诞生是继Euclid几何建立之后,数学发展的又一个里程碑式的事件。微积分诞生之前,人类基本上还处在农耕文明时期。解析几何的诞生是新时代到来的序曲,但还不是新时代的开端。它对旧数学作了总结,使代数与几何融为一体,并引发出变量的概念。变量,这是一个全新的概念,它为研究运动提供了基础

推导出大量的宇宙定律必须等待这样的时代的到来,准备好这方面的思想,产生像牛顿、莱布尼茨、拉普拉斯这样一批能够开创未来,为科学活动提供方法,指出方向的领袖,但也必须等待创立一个必不可少的工具——微积分,没有微积分,推导宇宙定律是不可能的。在17世纪的天才们开发的所有知识宝库中,这一领域是最丰富的,微积分为创立许多新的学科提供了源泉。

微积分的建立是人类头脑最伟大的创造之一,一部微积分发展史,是人类一步一步顽强地认识客观事物的历史,是人类理性思维的结晶。它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。恩格斯说:

“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就正是在这里。”

有了微积分,人类才有能力把握运动和过程。有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。航天飞机。宇宙飞船等现代化交通工具都是微积分的直接后果。在微积分的帮助下,万有引力定律发现了,牛顿用同一个公式来描述太阳对行星的作用,以及地球对它附近物体的作用。从最小的尘埃到最遥远的天体的运动行为。宇宙中没有哪一个角落不在这些定律的所包含范围内。这是人类认识史上的一次空前的飞跃,不仅具有伟大的科学意义,而且具有深远的社会影响。它强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。一场空前巨大的、席卷近代世界的科学运动开始了。毫无疑问,微积分的发现是世界近代科学的开端。

[编辑本段]

微积分优先权大争论

历史上,微积分是由两位科学家,牛顿和莱布尼茨几乎同时发现的。在创立微积分方面,莱布尼茨与牛顿功绩相当。这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法,认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系;他们都各自建立了微积分学基本定理,他们给出微积分的概念、法则、公式和符号理论为以后的微积分学的进一步发展奠定了坚实而重要的基础。总之,他们创立了作为一门独立学科的微积分学。

微积分这种数学分析方法正式诞生以后,由于解决了许多以往靠初等数学无法作答的实际问题,所以逐渐引起科学家和社会人士的重视。同时,也带来了关于“谁先建立微积分”问题的争论。从牛顿和莱布尼茨还在世时就开始出现这种争论,英国和欧洲大陆各国不少科学家都卷入这场旷日持久的、尖锐而复杂的论战。这场论战持续了100多年的时间。

就创造与发表的年代比较,牛顿创造微积分基本定理比莱布尼茨更早。前者奠基于1665—1667年,后者则是1672—1676年,但莱布尼茨比牛顿更早发表微积分的成果。故发明微积分的荣誉应属于他们两人。

[编辑本段]

第二次数学危机及微积分逻辑上的严格化

微积分诞生之后,数学迎来了一次空前繁荣的时期。对18世纪的数学产生了重要而深远的影响。但是牛顿和莱布尼茨的微积分都缺乏清晰的、严谨的逻辑基础,这在初创时期是不可避免的。科学上的巨大需要战胜了逻辑上的顾忌。他们需要做的事情太多了,他们急于去攫取新的成果。基本问题只好先放一放。正如达朗贝尔所说的:“向前进,你就会产生信心!”数学史的发展一再证明自由创造总是领先于形式化和逻辑基础。

于是在微积分的发展过程中,出现了这样的局面:一方面是微积分创立之后立即在科学技术上获得应用,从而迅速地发展;另一方面是微积分学的理论在当时是不严密的,出现了越来越多的悖论和谬论。数学的发展又遇到了深刻的令人不安的危机。例如,有时把无穷小量看作不为零的有限量而从等式两端消去,而有时却又令无穷小量为零而忽略不计。由于这些矛盾,引起了数学界的极大争论。如当时爱尔兰主教、唯心主义哲学家贝克莱嘲笑“无穷小量”是“已死的幽灵”。贝克莱对牛顿导数的定义进行了批判。

当时牛顿对导数的定义为:

当x增长为x+o时,x的立方(记为x^3)成为(x+o)的立方(记为(x+o)^3)。即x^3+3 x^2o+ 3x o^2+ o^3。x与x^3的增量分别为o和3 x^2o+ 3x o^2+ o^3。这两个增量与x的增量的比分别为1和3 x^2+ 3x o+ o^2,然后让增量消失,则它们的最后比为1与3 x^2。我们知道这个结果是正确的,但是推导过程确实存在着明显的偷换假设的错误:在论证的前一部分假设o是不为0的,而在论证的后一部分又被取为0。那么o到底是不是0呢?这就是著名的贝克莱悖论。这种微积分的基础所引发的危机在数学史上称为第二次数学危机,而这次危机的引发与牛顿有直接关系。历史要求给微积分以严格的基础。

第一个为补救第二次数学危机提出真正有见地的意见的是达朗贝尔。他在1754年指出,必须用可靠的理论去代替当时使用的粗糙的极限理论。但是他本人未能提供这样的理论。最早使微积分严格化的是拉格朗日。为了避免使用无穷小推理和当时还不明确的极限概念,拉格朗日曾试图把整个微积分建立在泰勒展开式的基础上。但是,这样一来,考虑的函数范围太窄了,而且不用极限概念也无法讨论无穷级数的收敛问题,所以,拉格朗日的以幂级数为工具的代数方法也未能解决微积分的奠基问题。

到了19世纪,出现了一批杰出的数学家,他们积极为微积分的奠基工作而努力,其中包括了捷克的哲学家B.Bolzano.曾著有《无穷的悖论》,明确地提出了级数收敛的概念,并对极限、连续和变量有了较深入的了解。

分析学的奠基人,法国数学家柯西在1821—1823年间出版的《分析教程》和《无穷小计算讲义》是数学史上划时代的著作。在那里她给出了数学分析一系列的基本概念和精确定义。

对分析基础做更深一步的理解的要求发生在1874年。那时的德国数学家外尔斯特拉斯构造了一个没有导数的连续函数,即构造了一条没有切线的连续曲线,这与直观概念是矛盾的。它使人们认识到极限概念、连续性、可微性和收敛性对实数系的依赖比人们想象的要深奥得多。黎曼发现,柯西没有必要把他的定积分限制于连续函数。黎曼证明了,被积函数不连续,其定积分也可能存在。也就是将柯西积分改进为Riemann积分。

这些事实使我们明白,在为分析建立一个完善的基础方面,还需要再深挖一步:理解实数系更深刻的性质。这项工作最终由外尔斯特拉斯完成,使得数学分析完全由实数系导出,脱离了知觉理解和几何直观。这样一来,数学分析所有的基本概念都可以通过实数和它们的基本运算表述出来。微积分严格化的工作终于接近封顶,只有关于无限的概念没有完全弄清楚,在这个领域,德国数学家Cantor做出了杰出的贡献。

总之,第二次数学危机和核心是微积分的基础不稳固。柯西的贡献在于,将微积分建立在极限论的基础上。外尔斯特拉斯的贡献在于逻辑地构造了实数论。为此,建立分析基础的逻辑顺序是

实数系——极限论——微积分

[编辑本段]

18世纪的分析学

驱动18世纪的微积分学不断向前发展的动力是物理学的需要,物理问题的表达一般都是用微分方程的形式。18世纪被称为数学史上的英雄世纪。他们把微积分应用于天文学、力学、光学、热学等各个领域,并获得了丰硕的成果。在数学本身又发展出了多元微分学、多重积分学、微分方程、无穷级数的理论、变分法,大大地扩展了数学研究的范围。

其中最著名的要数最速降线问题:即最快下降的曲线的问题。这个曾经的难题用变分法的理论可以轻而易举的解决。

[编辑本段]

微积分的现代发展

人类对自然的认识永远不会止步,微积分这门学科在现代也一直在发展着。以下列举了几个例子,足以说明人类认识微积分的水平在不断深化。

在Riemann将Cauchy的积分含义扩展之后,Lebesgue又引进了测度的概念,进一步将Riemann积分的含义扩展。例如著名的Dirichilet函数在Riemann积分下不可积,而在Lebesgue积分下便可积。

前苏联著名数学大师所伯列夫为了确定偏微分方程解的存在性和唯一性,建立了广义函数和广义导数的概念。这一概念的引入不仅赋予微分方程的解以新的含义,更重要的是,它使得泛函分析等现在数学工具得以应用到微分方程理论中,从而开辟了微分方程理论的新天地。

我国的数学泰斗陈省身先生所研究的微分几何领域,便是利用微积分的理论来研究几何,这门学科对人类认识时间和空间的性质发挥的巨大的作用。并且这门学科至今仍然很活跃。前不久由我国数学家朱熹平、曹怀东完成最后封顶的庞加莱猜想便属于这一领域。

在多元微积分学中,Newton—Leibniz公式的对照物是Green公式、Ostrogradsky—Gauss公式、以及经典的Stokes公式。无论在观念上或者在技术层次上,他们都是Newton—Leibniz公式的推广。随着数学本身发展的需要和解决问题的需要,仅仅考虑欧式空间中的微积分是不够的。有必要把微积分的演出舞台从欧式空间进一步拓展到一般的微分流形。在微分流形上,外微分式扮演着重要的角色。于是,外微分式的积分和微分流形上的Stokes公式产生了。而经典的Green公式、Ostrogradsky—Gauss公式、以及Stokes公式也得到了统一。

微积分的发展历史表明了人的认识是从生动的直观开始,进而达到抽象思维,也就是从感性认识到理性认识的过程。人类对客观世界的规律性的认识具有相对性,受到时代的局限。随着人类认识的深入,认识将一步一步地由低级到高级、由不全面到比较全面地发展。人类对自然的探索永远不会有终点。

怎样学好微积分

微积分

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

设函数f(x)=0在[a,b]上有解,在[a,b]中任意插入若干个分点

a=x0<x1<...<xn-1<xn=b

把区间[a,b]分成n个小区间

[x0,x1],...[xn-1,xn]。

在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,并作出和

如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I,这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分记作K。

无穷级数

用解析的形式来逼近函数,一般就是利用比较简单的函数形式,逼近比较复杂的函数,最为简单的逼近途径就是通过加法,即通过加法运算来决定逼近的程度,或者说控制逼近的过程,这就是无穷级数的思想出发点。

无穷级数是研究有次序的可数或者无穷个数函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项无穷级数级数有发散性和收敛性的区别。只有无穷级数收敛时有一个和;发散的无穷级数没有和。算术的加法可以对有限个数求和,但无法对无限个数求和,有些数列可以用无穷级数方法求和。包括数项级数、函数项级数(又包括幂级数、Fourier级数;复变函数中的泰勒级数、Laurent(洛朗)级数)。

敛散性判别:

(1)首先,考虑当项数无限增大时,一般项是否趋于零.如果不趋于零,便可判断级数发散.如果趋千零,则考虑其它方法.

(2)考察级数的部分和数列的敛散性是否容易确定,如能确定,则级数的敛散性自然也明确了.但往往部分和数列的通项就很难写出来,自然就难以判定其是否有极限了,·这时就应考虑其它方法.

(3)如果级数是正项级数,可以先考虑使用比值判别法或根值判别法是否有效.如果无效,再考虑用比较判别法.对于某些正项级数,可以考虑使用积分判别法.这是因为比值判别法与根值判别法使用起来一般比较简便,而比较判别法适应的范围却很大.

(4)如果级数是任意项级数,应首先考虑它是否绝对收敛.当不绝对收敛时,可以看看它是不是能用莱布尼兹判别法判定其收敛性的交错级数.

(5)级数敛散性的柯西判别准则给出了判断级数收敛的充要条件,因此,从逻辑上讲,它适应于一切级数敛散性的判断。但是,要检测一个具体的级数是否满足这个判别准则的条件本身就不比检测这个级数是否收敛容易,因而一般在检测具体级数的敛散性时,使用柯西判别准则是有困难的,甚至是无法进行的.不过,对于某些具体的级数,使用柯西判别准则也是行之有效的.因此,我们也要考虑它的使用,特别是上述诸多方法行不通的时候。

微积分 用极限定义证明等式

问题一:怎样学好微积分? 首先,上课一定要认真听讲,(老师所讲内容有侧重点,会省略一些东西,所以听讲绝对比自己看供自习快的多。)上课最好记笔记,可以选择只记例题。因为老师所选例题都是针对当堂知识点的,便于将来快速复习。其次,一定要做作业(太多的话,可以选择性做),碰上不会的也要在看过答案后再做一遍。最后,你若不追求满分的话就可以逛街、看**啦。。。。。。个人经验,希望能帮到你

问题二:怎样学习微积分? 你只学过高中的解析几何,那你的基础是不够的,高中的代数你要懂得啊!不用太精通,只要知道代数的公式怎么回事就行了,比如三角函数。另外不知道你的计算能力怎么样。高中的数学题比初中的计算技巧要求高点,最起码因式分解和一些变换要灵活许多。

微积分的求导、定积分的计算上是需要计算技巧的。微积分不像初等数学,理解是最为重要的,你要不理解微积分的到底是啥,告诉你公式有些文字题你也无从下手。

其实我感觉微积分跟高中的东西联系不是很大,你只要对高中的数学有点印象就行了,但三角函数、对数、指数要知道,勾股定理要会。剩下的就是计算技巧了,技巧这个东西就是练出来的。你要能做上几万道微积分题也不愁技巧了,微积分这个东西是要多做题。

买书的话,就买些基础的,现在一般微积分教材的套路都是函数基础知识回顾、什么极限、导数、微分、导数应用、中值定理、最大最小问题、不定积分、定积分。比较深入的教材还带点泰勒级数、向量、二重三重积分什么的。

根据自己的口味去书店转一圈就知道了,我给你推荐的你不一定相中。

问题三:如何学好微积分 跟高中没关系,极限思想搞透彻后剩下的微积分就建立在极限思想的体系上,就是一些方法技巧,根本上就是依靠极限理论,直接去学怎么算积分或者做证明题是舍本逐末

问题四:怎么学好微积分 1:重视概念,掌握每一个公式定理的由来,这些推导方式也是做题的思想。

微积分是一个工具,学好微积分还要会用好。比如在物理,或者数学的某些问题当中。尽量想一想能否用微积分作答。

2:要想办法消除对数学的恐惧感,找一些趣味数学题目看看,树立信心以后再回来学微积分。学的时候重在微积分公式的来由和推倒过程,这样比单纯的记公式效果好的多。并且有些问题就是用微积分的定义来解决的,不需要用微积分公式。

3:我们老师上课时, 伸出两个手指说到:“ 学好微积分就三个字 “多做练习””

4:微积分的一切概念的本源就是极限,而极限的提出依赖于

一套被称之为ε-δ的数学语言。因此学好微积分的关键是掌握这套分析语言(这是针对数学专业而言的)。如果对书上的讲解不理解,那么别去硬做习题,而是要先找一本微积分科普书或者是数学史之类的书来看。看这类书的目的是对微积分概念提出的背景进行深入了解,并且了解当时的数学大家的思想的演进(当然这也就会成为你的思想演进)。做好这一步,那么你就会了解什么是极限?什么是微分?等等。然后你可以来研究你的课本,并且辅之以定量的习题。要记住,这是做题是为了巩固你的认识,不是为了应付那些无聊的考试。如果做好了这一步,那么你对微积分概念的理解就会更加深入。这时,你可能会对微积分有了一些兴趣。当然也就可以进一步的学习了。如果你想应付考试,那么可以多做题了。比如做一下经典的吉米多维奇数学分析习题集(当然要有选择地做,不必全做)。到现在你就是一个准高手了。然而,你还需要进一步的训练,进一步的阅读。

5:先搞清楚微积分的作用和实际的情况,要熟记基本公式,在脑袋里要有模型的概念,最好了解原始求微积分的方法

6:数学训练逻辑思考!这点十分重要。逻辑思考的能力不管它是不是与生俱有的,但很确定的一点是,它是可以被训练的,方法之一就是透过学习数学。数学解题会教你如何接近问题、学到如何抽丝剥茧地看出问题的关键、问出适切的问题、从不同的角度来思考问题等等。逻辑思考的能力比数学有用太多,例如它对学新的语言、组织与计画等也很有帮助。

总而言之,每位学生都应该而且可以为微积分找到学习动机。你不必认同「微积分是人类最伟大的成就之一,这个理论之美让人目眩神迷」。但至少把微积分看作是掌握学科的重要工具,而且是教你学习如何有系统地进攻与解决问题的重要理论。

问题五:如何学好高等数学微积分 答:

1、高等数学(以数一为例)中的微积分,可以大致分为一元微积分和多元微积分,两者的区别不仅仅是自变量的数目,而是二维(平面)和N维之间的差异;这种差异是非常抽象的,绝不是现有教材上的“切线”和“曲面切平面”的差异,因此,从这个方面来讲,首先理解和认识N元微积分的本质及难度才能更好的学好高等微积分;

2、微积分的本质其实就是:△x;当△x趋近于某个确定的值时,如△x→0时,研究函数的因变量的情况就是微分(同理你就可以得出连续的概念);而当△x取值于某个确定的领域( *** )时,研究函数的因变量的情况就是积分。多重微积分是类似的,麻烦的一点是△x和△y等是否同时趋近,如果是,那么此时的z的变化(这里假设函数是:z=z(x,y))是如何;如果不是,那么当△x和△y等单独趋近时,z的变化又如何。当单独变化时,就是偏导,即:?z/?x或?z/?y。同样的如果△x和△y线性的一致趋近于 *** D(x和y的共同取值空间),那么就是二重积分;再如果△x和△y趋近的 *** D上限或下限是∞,那么就是广义积分。

3、上述总结一下:微积分本质就是:当自变量微小变化下趋近于确定的值和趋近于确定的 *** 下,因变量的变化情况或取值情况!

4、3的定义和目前书本的定义是有本质区别的,书本的定义是用切线等来解释的,这种解释泯灭了微积分的抽象本质。造成了一说起导数就是切线或者切平面,这显然是狭义的理解。

5、因此,学好微积分,首先要牢牢抓住微积分的抽象本质,即“极限分割思维”或者“极限趋近”思维;再者,要牢记一些初等函数的性质和定义,如二次函数(或者多项式函数),三角函数,指数/对数函数等等,只有了解了这些函数特征,才能对其微积分的情况更了然于胸;

6、最后,不管微积分的本质是什么,都是针对函数的,而函数其实是一种特殊的 *** ,因此,学习好微积分就要对 *** 的概念和性质有深入的理解。

问题六:怎样才能快速有效的把微积分学好? 微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科,不仅贯穿数学的始终,也广泛应用与其他学科,一定要仔细学哦!

1、课前预习最好把不懂地方做笔记

2、上课时认真听课,重点听预习不懂地方

3、课后多做习题,不懂的要及时问老师

4、学微积分不要买一大堆参考书没头没脑地翻看,一定要挑一本质量好的做完习题,弄懂不会的问题,注意多和老师和同学交流。

5、注意要做题,不是看题,看懂了不代表你会做了,训练重点是思维和方法。

问题七:如何快速学会微积分 首先按照老师的要求, 不多不少, 高质量地完成老师在课堂和课后的任务. 这是第一阶段. 老师详细讲解的地方, 要仔细演算, 我印象中比如拉格朗日中值定理的证明, 斯托克斯积分公式等. 如果老师没有详细讲解某个定理的来龙去脉, 那么先把它放一放, 放到第二阶段。

因为一本数学教科书的内容如果按100%计算的话, 老师在课堂上涉及到的有可能只有15%-20%, 所以老师会略过非常多的定理证明, 甚至一些重要的章节, 最后考试是涉及不到的. 如果你深陷其中, 绝对会耽误时间, 拖延进度, 导致最后成绩不会好。

这一阶段并不提倡大量地做习题, 把老师布置的练习做完, 最多加一点点练习. 掌握老师课堂上想要教给你的, 这是学习的根本. 考试分数不重要, 所以我去做一些我自己觉得重要的练习, 这是我当年犯过的错误. 既然觉得考试简单, 为什么不把它做好呢?

进入第二阶段有两个条件, 第一, 学有余力; 第二, 数学成绩要好. 基本东西没有做好就急着去做更高级的内容, 这是不对的. 把第一阶段的任务完成好了以后再开始第二阶段。

进入第二阶段, 就应该扩展视野, 这个时候需要大量地做题, 来理解数学的基本抽象概念. 找一些好的教材和习题集. 前苏联菲赫金戈尔茨有一套六本的>,内容扎实, 题目也很有挑战性, 是很多大牛打下基础的习题集. 内容同样扎实的还有, Richard Courant的>。数学分析后续包括复变函数分析和实分析, 这两门课你应该接触不到, 但是是数学专业很重视的, 实分析非常难, 在一些学校是研究生才会去学. 往后的事情不用着急, 把当下的能做好的努力做好吧。最后说一点,如果想在数学方面有发展, 要去更专业的地方, 不能只是泛泛的爱好。

问题八:微积分应该怎么学 5分 1、微积分的学习,确实不同于高中数学,涉及到的数学思想比高中深刻得多。

2、即使是大学毕业生,绝大多数都学过微积分,可是他们中的大多数,其实都没有

领会微积分的思想、微积分的方法。以致于,随便找一个大学毕业生,尤其是毕业

了好几年,又没有从事教学、理论研究的人问一道简单的微积分题目,他们至少有

90%以上一定会说“学了很久了,已经忘记了”。这说明他们当初根本就没有学好,

根本没有搞懂。只要当初学懂了,就没有忘记的道理,难题不会解,可以理解;简

单题不会,100%当初是死背的、强记的、囫囵吞枣的。这些学过微积分的人,在

老农民面前是吹牛的资本,在儿女面前是耻辱,在工作上是永远的痛。

楼主如果希望自己出类拔萃,不步大多数大学毕业生花拳绣腿的后尘,就应该:

1、最好自学在先,或预习在先。这句话说起来容易,做起来就难了。

具体的就是,争取看懂每一个定义、每一个公式、每一个的方法的意思究竟是什么?

为什么要这样,这样的实质意思是什么?

2、平常我们说带着问题学,更高的境界是带着你自己的理解、自己的预言去学,

也就是不但对不懂的地方有疑问,还得有自己预言的解答。或者说,看完了上一章,

大体上能预言下一章肯定讲什么。这一点说难极难,说易极易,多用心即可。如果

你能大体预言对了下一个章节肯定讲什么时,你的信心会空前提高,你会觉得你有

预言能力,久而久之,自学能力就培养起来了。普通人所说的“自学能力”,都达

不到这个境界,他们的“自学能力”,只是死记硬背加穿凿附会的能力。

如果具备了这种最高境界的“自学能力”,其实就已经具备了“著书立说”的能力了。

3、不要被中学的思想限制住,中学的概念,有的是不对的,有的是在特殊情况下才对。

中学的知识只是特例中的特例,进入微积分的世界后,渐渐地就进入了一般的情况了。

举例来说,0不可以做分母,大学也是,可是不少学生却说0/0型的极限违背数学原理,

这只是一知半解的学生才有的说法。又如,任何数的零次方都是1,因而不少学生无

法理解0的0次幂的极限过程。再如,1的任何次幂都是1,而1的无穷次幂的极限就更

难理解了。

4、概念理解了,就立刻总结;然后多解题,通过大量解题,才能提高悟性。学不好微

积分的人,多半都是不肯多解题,以为解了几道就够了。事实上,不解成千上万的题

是不可能有真正的悟性的!解题后还得总结题型,总结方法,总结问题所在,然后再

作预言、再印证、再预言、、、、。久而久之,大师就诞生了。加油!

5、最难的一点是:不要被一些教师误导。例如将等价无穷小代换渲染得走火入魔的国内

教师、教授,多如牛毛。事实上,看看国际情况,没有这么荒唐。作为学生,唯一的

办法就是多看看国际上的通用教材。

祝学习顺利!

欢迎追问。

希望能解决您的问题。

问题九:微积分难学吗。。。? 如何学好微积分

初等数学和高等数学的不同。初等数学主要研究离散的量,而高

等数学则是连续的量。正因为如此,高等数学才很难学习。在此,而

高等数学中微积分是其他数学知识的基础,故结合诸多高校学习微积

分以及我本人亲身学习,在此浅谈下微积分学习的方法。

首先我们应该肯定微积分的伟大,微积分的创立,与其说是数学

史上,不如说是人类历史上的一件大事。时至今日,它对工程技术的

重要性就像望远镜之于天文学,显微镜之于生物学一样。它的出现并

不偶然,它有一个漫长的成长过程。早在古希腊时代,阿基米德等人

的著作就已含有积分学的萌芽。以后经过一千多年的沉寂,欧洲在文

艺复兴以后对阿基米德的学说重新掀起研究的热潮,涌现出许多先驱

者。

而微积分真正的确立是在

17

世纪,

从笛卡儿的解析几何开始,

着是微积分的创建,它将数学的历史带入一个新的时期――变量数学

时期。欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数

学,微积分才是真正的变量数学,是数学中的大革命。微积分在数学

发展史上可以认为是一个伟大的成就,由于微积分的创立不仅解决了

当时的一些重要的科学问题,而且由此产生了数学的一些重要分支,

如微分方程、无穷级数、微分几何、变分法、复变函数等。

微积分解决了一些重要问题:①求瞬时速度②求曲线的切线③求

函数的最值④求曲线长。这些问题对天文学、物理学等学科的发展有

重要的促进作用。因为它的重要也赋予了其难学的特性,是大一理科

学子头疼的主要数学问题。

预习十分重要。预习并不是自学,而是浏览式地看书,找到书中

的重点难点,以便“集中式的听课”

如果时间不多,你可以浏览一

下教师将要将要讲的主要内容,获得一个大概的印象,这可以在一定

程度上帮助你在课堂上跟上教师的思路,如果时间比较充裕,除了浏

览之外,还可以进一步细致地阅读部分内容,并且准备好问题,看一

下自己的理解与教师讲解的有什么区别,

有哪些问题需要与教师讨论。

如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得

比较好的效果。不要急于做题,而要先对教材进行深入的思考。做题

时不要轻易去翻答案,而是应该反复思考、与同学讨论。一道题做不

出来,比做出来的收获大。学习的信心也十分重要。提高信心,培养

良好的心理素质,勇于克服各种困难;不要因为一时的没有兴趣而放

弃,

兴趣不是与生俱来的,

而是靠后天慢慢培养的。

良好的学习传统,

刻苦勤奋,实现自己人生的辉煌,这才是当代大学生应有的素质。

上课要就预习中的难点重点集中听讲,针对重点难点可向老师直

接提问,在大学的课堂上老师更期望学生能“打断”他的讲课,老师

更希望与学生好好交流探讨课堂知识,课堂上提问既能得到老师特别

的讲解也能就题论题。课堂上要勇于发问。上课时,如果你有任何疑

问,应该立即发问。因为你的问题,有可能正好就是其他同学不敢问

的问题;也有可能是在座所有的人

(

包括老师

)

都还没考虑到的问题。

课堂上发问,不仅能对自己也是对全班同学的莫大帮助。一个活泼生

动的学习环境,不单是只靠老师来营造,也需要同学们的参与,老师

们都很希望也很重视同学们在课堂上能够有更主动的表现。相信这样

互动的学习过程,一定能让你在学习微积分上有更多的收获。

微积分学习中会遇到许多积分公式,记住并熟练的运用一些积分

公式可减缩做题时间并对今后的学习有很大的帮助作用,而积分公式

多而又繁琐,需要特别的记忆。多次推导公式提高对公式的理解,这

也是变相的熟练运用其他公式,数学学习中公式的推导需要其他公式

的辅助,基本积分公式对复杂的积分公式具......>>

问题十:如何学好微积分? 我是工商系的,微积分学的凑合,我的老师上课写板书,我猜你的老师应该也写。我觉得你应该好好记笔记,特别好用。我复习时从来不用看书,看老师讲的例题,弄懂了,在做题,老实说我的教材和你的不一样,耿我相信方法同样适用。我帮别人复习数学时也是做例题,在做相关作业,效果特好。如果能自己做出书上的题以后在看辅导书,万不可急于求成!极限计算和积分的各种类型必须弄懂,是通书的基础(积分和微分即求导互逆运算),反复做课后习题,另外在学时注意归纳,打个比方:在无穷级数一章里判断正项级数敛散性有个比较判别法,书上讲的多,其实就8个字概括,“大收小收、小发大发”,这样复习时特省事。别气馁自己没有底子如何如何,都是“无关变量”,从极限开始,祝你成功,有不会题也可以发表的啊!

微积分的符号怎么打

微积分中用极限定义证明等式如下:

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

搜狗拼音输入法,输入“jifen”,第5个选项。

微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

十七世纪以来,微积分的概念和技巧不断扩展并被广泛应用来解决天文学、物理学中的各种实际问题,取得了巨大的成就。但直到十九世纪以前,在微积分的发展过程中,其数学分析的严密性问题一直没有得到解决。十八世纪中,包括牛顿和莱布尼兹在内的许多大数学家都觉察到这一问题并对这个问题作了努力,但都没有成功地解决这个问题。

整个十八世纪,微积分的基础是混乱和不清楚的,许多英国数学家也许是由于仍然为古希腊的几何所束缚,因而怀疑微积分的全部工作。这个问题一直到十九世纪下半叶才由法国数学家柯西得到了完整的解决,柯西极限存在准则使得微积分注入了严密性,这就是极限理论的创立。极限理论的创立使得微积分从此建立在一个严密的分析基础之上,它也为20世纪数学的发展奠定了基础。

注:在中世纪(14—17世纪)欧洲数学大发展的时期,我国基本处于停滞状态(明、清时期)。所以,我国的数学家与微积分无缘。